Covering symmetric supermodular functions by uniform hypergraphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Covering symmetric supermodular functions by uniform hypergraphs

We consider the problem of finding a uniform hypergraph that satisfies cut demands defined by a symmetric crossing supermodular set function. We give min-max formulas for both the degree specified and the minimum cardinality problem. These results include as a special case a formula on the minimum number of r-hyperedges whose addition to an initial hypergraph will make it k-edge-connected.

متن کامل

Covering symmetric supermodular functions by graphs

The minimum number of edges of an undirected graph covering a symmetric , supermodular set-function is determined. As a special case, we derive an extension of a theorem of J. Bang-Jensen and B. Jackson on hypergraph connectivity augmentation. 0. INTRODUCTION T. Watanabe and A. Nakamura 1987] proved a min-max formula for the minimum number of new edges whose addition to a given undirected graph...

متن کامل

Covering Non-uniform Hypergraphs

A subset of the vertices in a hypergraph is a cover if it intersects every edge. Let τ(H) denote the cardinality of a minimum cover in the hypergraph H , and let us denote by g(n) the maximum of τ(H) taken over all hypergraphs H with n vertices and with no two hyperedges of the same size. We show that g(n) < 1.98 √ n(1 + o(1)). A special case corresponds to an old problem of Erdős asking the ma...

متن کامل

Codegree Thresholds for Covering 3-Uniform Hypergraphs

Given two 3-uniform hypergraphs F and G = (V,E), we say that G has an F -covering if we can cover V with copies of F . The minimum codegree of G is the largest integer d such that every pair of vertices from V is contained in at least d triples from E. Define c2(n, F ) to be the largest minimum codegree among all n-vertex 3-graphs G that contain no F -covering. Determining c2(n, F ) is a natura...

متن کامل

Improved Bounds for Covering Complete Uniform Hypergraphs

We consider the problem of covering the complete r-uniform hypergraphs on n vertices using complete r-partite graphs. We obtain lower bounds on the size of such a covering. For small values of r our result implies a lower bound of Ω( e r r √ r n log n) on the size of any such covering. This improves the previous bound of Ω(rn log n) due to Snir [5]. We also obtain good lower bounds on the size ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series B

سال: 2004

ISSN: 0095-8956

DOI: 10.1016/j.jctb.2003.12.004